Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property

نویسنده

  • Richard P. Stanley
چکیده

Techniques from algebraic geometry, in particular the hard Lefschetz theorem, are used to show that certain finite partially ordered sets O x derived from a class of algebraic varieties X have the k-Sperner property for all k. This in effect means that there is a simple description of the cardinality of the largest subset of C) x containing no (k + 1)-element chain. We analyze, in some detail, the case when X G/P, where G is a complex semisimple algebraic group and P is a parabolic subgroup. In this case, Qx is defined in terms of the "Bruhat order" of the Weyl group of G. In particular, taking P to be a certain maximal parabolic subgroup of G SO(2n + 1), we deduce the following conjecture of Erd6s and Moser: Let S be a set of 2 + 1 distinct real numbers, and let T1, , Tk be subsets of S whose element sums are all equal. Then k does not exceed the middle coefficient of the polynomial 2(1 + q)2(1 + q2)2... (1 + qe)2, and this bound is best possible. 1. The Sperner property. Let P be a finite partially ordered set (or poser, for short), and assume that every maximal chain of P has length n. We say that P is graded of rank n. Thus P has a unique rank function p:P-{0, 1,..., n} satisfying p(x)= 0 if x is a minimal element of P, and p(y) p(x) + 1 if y covers x in P (i.e., if y > x and no z 6 P satisfies y > z > x). If p (x) i, then we say that x has rank i. Define Pi {x P: p (x) i} and set pi pi(P) card Pi. The polynomial F(P, q) po + plq +" + Pnq is called the rank-generating function of P. We say that P is rank-symmetric if pi pn-for all i, and that P is rank-unimodal if po <= pl <=" <= pi >= p+ >=" >= pn for some i. An antichain (also called a Spernerfamily or clutter) is a subset A of P, such that.no two distinct elements of A are comparable. The poset P is said to have the Sperner property (or property $1) if the largest size of an antichain is equal to max {pi: 0 <= <-n}. More generally, if k is a positive integer then P …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Sperner property and Gorenstein Algebras Associated to Matroids

We introduce a certain class of algebras associated to matroids. We prove the Lefschetz property of the algebras for some special cases. Our result implies the Sperner property for the Boolean lattice and the vector space lattice. Résumé. Nous présentons une classe d’algèbres associées aux matroı̈des. Nous démontrons que dans quelques cas spécifiques, ces algèbres verifient la propriété de Lefsc...

متن کامل

Soergel Bimodules and the Shape of Bruhat Intervals

Given an element w of a Coxeter group, let ai(w) be the number of elements less than w in Bruhat order. A theorem of Björner and Ekedahl states that if W is crystallographic, then ai(w) ≤ aj(w) for all 0 ≤ i < j ≤ `(w) − i. Their proof uses the hard Lefschetz property in intersection cohomology. In this note we extend Björner and Ekedahl’s theorem to all Coxeter groups using the hard Lefschetz ...

متن کامل

On the formality and the hard Lefschetz property for Donaldson symplectic manifolds

We introduce the concept of s–formal minimal model as an extension of formality. We prove that any orientable compact manifold M , of dimension 2n or (2n − 1), is formal if and only if M is (n− 1)–formal. The formality and the hard Lefschetz property are studied for the Donaldson symplectic manifolds constructed in [13]. This study permits us to show an example of a Donaldson symplectic manifol...

متن کامل

A Morphism of Intersection Homology and Hard Lefschetz

We consider a possibility of the existence of intersection homology morphism, which would be associated to a map of analytic varieties. We assume that the map is an inclusion of codimension one. Then the existence of a morphism follows from Saito’s decomposition theorem. For varieties with conical singularities we show, that the existence of intersection homology morphism is exactly equivalent ...

متن کامل

Examples That the Strong Lefschetz Property Does Not Survive Symplectic Reduction

In this paper we construct a family of six-dimensional compact non-Kähler Hamiltonian S-manifolds, each of which satisfies the strong Lefschetz property itself but nevertheless has a non-Lefschetz symplectic quotient. This provides the first known counter examples to the question whether the strong Lefschetz property descends to the symplectic quotient. In addition we also show how to vary our ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1980